img
Flexible circuits in the d‐dimensional rigidity matroid       
Yazarlar
Georg Grasegger
Dr. Öğr. Üyesi Hakan GÜLER Dr. Öğr. Üyesi Hakan GÜLER
Kastamonu Üniversitesi, Türkiye
Bill Jackson
Anthony Nixon
Özet
A bar-joint framework (Formula presented.) in (Formula presented.) is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of (Formula presented.). It is known that, when (Formula presented.) is generic, its rigidity depends only on the underlying graph (Formula presented.), and is determined by the rank of the edge set of (Formula presented.) in the generic (Formula presented.) -dimensional rigidity matroid (Formula presented.). Complete combinatorial descriptions of the rank function of this matroid are known when (Formula presented.), and imply that all circuits in (Formula presented.) are generically rigid in (Formula presented.) when (Formula presented.). Determining the rank function of (Formula presented.) is a long standing open problem when (Formula presented.), and the existence of nonrigid circuits in (Formula presented.) for (Formula presented.) is a major contributing factor to why this problem is so difficult. We begin a study of nonrigid circuits by characterising the nonrigid circuits in (Formula presented.) which have at most (Formula presented.) vertices.
Anahtar Kelimeler
bar-joint framework | flexible circuit | rigid graph | rigidity matroid
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı JOURNAL OF GRAPH THEORY
Dergi ISSN 0364-9024
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q3
Makale Dili İngilizce
Basım Tarihi 06-2022
Cilt No 100
Sayı 2
Sayfalar 315 / 330
Doi Numarası 10.1002/jgt.22780
Makale Linki http://dx.doi.org/10.1002/jgt.22780
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
WoS 5
SCOPUS 3
Google Scholar 13
Flexible circuits in the d‐dimensional rigidity matroid

Paylaş