Yazarlar |
Doç. Dr. Zafer ÜNAL
Kastamonu Üniversitesi, Türkiye |
Dr. Öğr. Üyesi Ümit TOKEŞER
Kastamonu Üniversitesi, Türkiye |
Prof. Dr. Göksal BİLGİCİ
Kastamonu Üniversitesi, Türkiye |
Özet |
Halici (Adv Appl Clifford Algebr 25(4):905–914, 2015) defined dual Fibonacci and dual Lucas octonions by the relations Q~ n= Qn+ εQn+1 and P~ n= Pn+ εPn+1 for every integer n where Qn and Pn are the Fibonacci and Lucas octonions respectively, and ε is the dual unit. The aim of this paper is to investigate properties of dual Fibonacci and dual Lucas octonions. After obtaining the Binet formulas for the sequences {Q~n}n=0∞ and {P~n}n=0∞, we derive some identities for these sequences such as Catalan’s, Cassini’s and d’Ocagne’s identities. |
Anahtar Kelimeler |
Dual Fibonacci octonion | Dual Lucas octonion | Fibonacci sequence | Lucas sequence |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | ADVANCES IN APPLIED CLIFFORD ALGEBRAS |
Dergi ISSN | 0188-7009 |
Dergi Tarandığı Indeksler | SCI-Expanded |
Dergi Grubu | Q2 |
Makale Dili | İngilizce |
Basım Tarihi | 06-2017 |
Cilt No | 27 |
Sayı | 2 |
Sayfalar | 1907 / 1916 |
Doi Numarası | 10.1007/s00006-016-0724-4 |
Makale Linki | http://link.springer.com/10.1007/s00006-016-0724-4 |