| Yazarlar (3) |
Doç. Dr. Zafer ÜNAL
Kastamonu Üniversitesi, Türkiye |
Dr. Öğr. Üyesi Ümit TOKEŞER
Kastamonu Üniversitesi, Türkiye |
Prof. Dr. Göksal BİLGİCİ
Kastamonu Üniversitesi, Türkiye |
| Özet |
| Halici (Adv Appl Clifford Algebr 25(4):905–914, 2015) defined dual Fibonacci and dual Lucas octonions by the relations Q~ n= Qn+ εQn+1 and P~ n= Pn+ εPn+1 for every integer n where Qn and Pn are the Fibonacci and Lucas octonions respectively, and ε is the dual unit. The aim of this paper is to investigate properties of dual Fibonacci and dual Lucas octonions. After obtaining the Binet formulas for the sequences {Q~n}n=0∞ and {P~n}n=0∞, we derive some identities for these sequences such as Catalan’s, Cassini’s and d’Ocagne’s identities. |
| Anahtar Kelimeler |
| Dual Fibonacci octonion | Dual Lucas octonion | Fibonacci sequence | Lucas sequence |
| Makale Türü | Özgün Makale |
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale |
| Dergi Adı | ADVANCES IN APPLIED CLIFFORD ALGEBRAS |
| Dergi ISSN | 0188-7009 Wos Dergi Scopus Dergi |
| Dergi Tarandığı Indeksler | SCI-Expanded |
| Dergi Grubu | Q2 |
| Makale Dili | İngilizce |
| Basım Tarihi | 06-2017 |
| Cilt No | 27 |
| Sayı | 2 |
| Sayfalar | 1907 / 1916 |
| Doi Numarası | 10.1007/s00006-016-0724-4 |
| Makale Linki | http://link.springer.com/10.1007/s00006-016-0724-4 |