img
Automatic Detection of Covid-19 with Bidirectional LSTM Network Using Deep Features Extracted from Chest X-ray Images      
Yazarlar
Doç. Dr. Kemal AKYOL Doç. Dr. Kemal AKYOL
Türkiye
Baha Şen
Ankara Yıldırım Beyazıt Üniversitesi, Türkiye
Özet
Coronavirus disease, which comes up in China at the end of 2019 and showed different symptoms in people infected, affected millions of people. Computer-aided expert systems are needed due to the inadequacy of the reverse transcription-polymerase chain reaction kit, which is widely used in the diagnosis of this disease. Undoubtedly, expert systems that provide effective solutions to many problems will be very useful in the detection of Covid-19 disease, especially when unskilled personnel and financial deficiencies in underdeveloped countries are taken into consideration. In the literature, there are numerous machine learning approaches built with different classifiers in the detection of this disease. This paper proposes an approach based on deep learning which detects Covid-19 and no-finding cases using chest X-ray images. Here, the classification performance of the Bi-LSTM network on the deep features was compared with the Deep Neural Network within the frame of the fivefold cross-validation technique. Accuracy, sensitivity, specificity and precision metrics were used to evaluate the classification performance of the trained models. Bi-LSTM network presented better performance compare to DNN with 97.6% value of high accuracy despite the few numbers of Covid-19 images in the dataset. In addition, it is understood that concatenated deep features more meaningful than deep features obtained with pre-trained networks by one by, as well. Consequently, it is thought that the proposed study based on the Bi-LSTM network and concatenated deep features will be noteworthy in the design of highly sensitive automated Covid-19 monitoring systems.
Anahtar Kelimeler
Artifcial intelligence | Bi-LSTM | Concatenated deep features | Covid-19 | Deep learning | X-ray imaging
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES
Dergi ISSN 1913-2751
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q2
Makale Dili İngilizce
Basım Tarihi 03-2022
Cilt No 14
Sayı 1
Sayfalar 89 / 100
Doi Numarası 10.1007/s12539-021-00463-2
Makale Linki 10.1007/s12539-021-00463-2