img
Plant leaf disease classification using EfficientNet deep learning model     
Yazarlar
Ümit Atila
Karabük Üniversitesi, Türkiye
Murat Uçar
İskenderun Teknik Üniversitesi, Türkiye
Doç. Dr. Kemal AKYOL Doç. Dr. Kemal AKYOL
Kastamonu Üniversitesi, Türkiye
Emine Uçar
İskenderun Teknik Üniversitesi, Türkiye
Özet
Most plant diseases show visible symptoms, and the technique which is accepted today is that an experienced plant pathologist diagnoses the disease through optical observation of infected plant leaves. The fact that the disease diagnosis process is slow to perform manually and another fact that the success of the diagnosis is proportional to the pathologist's capabilities makes this problem an excellent application area for computer-aided diagnostic systems. Instead of classical machine learning methods, in which manual feature extraction should be flawless to achieve successful results, there is a need for a model that does not need pre-processing and can perform a successful classification. In this study, EfficientNet deep learning architecture was proposed in plant leaf disease classification and the performance of this model was compared with other state-of-the-art deep learning models. The PlantVillage dataset was used to train models. All the models were trained with original and augmented datasets having 55,448 and 61,486 images, respectively. EfficientNet architecture and other deep learning models were trained using transfer learning approach. In the transfer learning, all layers of the models were set to be trainable. The results obtained in the test dataset showed that B5 and B4 models of EfficientNet architecture achieved the highest values compared to other deep learning models in original and augmented datasets with 99.91% and 99.97% respectively for accuracy and 98.42% and 99.39% respectively for precision.
Anahtar Kelimeler
Deep learning | Leaf image | Plant disease | Transfer learning
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Ecological Informatics
Dergi ISSN 1574-9541
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q2
Makale Dili İngilizce
Basım Tarihi 03-2021
Cilt No 61
Sayı 1
Sayfalar 1 / 13
Doi Numarası 10.1016/j.ecoinf.2020.101182
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
SCOPUS 525
Google Scholar 706
Plant leaf disease classification using EfficientNet deep learning model

Paylaş