img
img
Forecasting of Dry Freight Index Data by Using Machine Learning Algorithms   
Yazarlar (1)
Doç. Dr. Kemal AKYOL Doç. Dr. Kemal AKYOL
Kastamonu Üniversitesi, Türkiye
Devamını Göster
Özet
Discovery of meaningful information from the data and design of an expert system are carried out within the frame of machine learning. Supervised learning is used commonly in practical machine learning. It includes basically two stages: a) the training data are sent to as input to the classifier algorithms, b) the performance of pre-learned algorithm is tested on the testing data. And so, knowledge discovery is carried out through the data. In this study, the analysis of Lloyd data is performed by utilizing Gradient Boosted Trees and Multi-Layer Perceptron learning algorithms. Lloyd data consist of the Baltic Dry Index, Capesize Index, Panamax Index and Supramax Index values, updated daily. Accurate prediction of these data is very important in order to eliminate the risks of commercial organization. Eight datasets from Lloyd data are obtained within the frame of two scenarios: a) the last three index values in the freight …
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SCOPUS dergilerinde yayınlanan tam makale
Dergi Adı International Journal of Intelligent Systems and Applications
Dergi ISSN 2074-904X Scopus Dergi
Dergi Tarandığı Indeksler CMCI: CompuMath Citation Index
Makale Dili İngilizce
Basım Tarihi 08-2019
Cilt No 11
Sayı 8
Sayfalar 35 / 43
Doi Numarası 10.5815/ijisa.2019.08.04
Makale Linki http://www.mecs-press.org/ijisa/ijisa-v11-n8/v11n8-4.html
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Google Scholar 4
Forecasting of Dry Freight Index Data by Using Machine Learning Algorithms

Paylaş