Yazarlar (3) |
![]() Hakkari Üniversitesi, Türkiye |
![]() Karabük Üniversitesi, Türkiye |
![]() Kastamonu Üniversitesi, Türkiye |
Özet |
A successful modeling can be achieved with a data set containing the correct information. However, achieving accurate information is only provided thanks to balanced distribution of features of samples that lie in the data set. In this study, the Generative Adversarial Networks (GAN) method was used to increase the number of samples belonged to a medical data set (White Blood Cells) that containing a small number of images. Accurate learning of the specific characteristics of both the data and classes allowed the classification success to be maximized. |
Anahtar Kelimeler |
Bildiri Türü | Tebliğ/Bildiri |
Bildiri Alt Türü | Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum) |
Bildiri Niteliği | Alanında Hakemli Uluslararası Kongre/Sempozyum |
Bildiri Dili | İngilizce |
Kongre Adı | International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES 2019) |
Kongre Tarihi | 26-04-2019 / 28-04-2019 |
Basıldığı Ülke | Türkiye |
Basıldığı Şehir | Alanya |