img
A new computational approach to the fractional-order Liouville equation arising from mechanics of water waves and meteorological forecasts     
Yazarlar
Xiao-Guang Yue
Zeying Zhang
Arzu Akbulut
Mohammed K. A. Kaabar
Doç. Dr. Melike KAPLAN YALÇIN Doç. Dr. Melike KAPLAN YALÇIN
Kastamonu Üniversitesi, Türkiye
Özet
The current analysis employs the improved F-expansion, modified extended tanh, exponential rational function, and (g′)−expansion procedures to find a divergent collection of the fractional Liouville equation's exact solutions in the context of beta-derivative. Also, we have given the graphical representations of the obtained results. These plots are useful in describing the dynamic characteristics of the solutions. The investigated equation is very essential in studying the mechanics of water waves and atmospheric predictability. Therefore, our techniques provide a great help in investigating various nonlinear models formulated in the contexts of fractional derivatives arising from oceanography and mathematical physics.
Anahtar Kelimeler
Beta-derivative | Exact solutions | Fractional differential equations | Symbolic computation
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Journal of Ocean Engineering and Science
Dergi ISSN 2468-0133
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili Türkçe
Basım Tarihi 01-2022
Sayı 1
Doi Numarası 10.1016/j.joes.2022.04.001
Makale Linki http://dx.doi.org/10.1016/j.joes.2022.04.001