img
New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second-order spatio-temporal dispersion via double Laplace transform method      
Yazarlar
Mohammed K. A. Kaabar
Francisco Martínez
José Francisco Gómez-Aguilar
Behzad Ghanbari
Doç. Dr. Melike KAPLAN YALÇIN Doç. Dr. Melike KAPLAN YALÇIN
Kastamonu Üniversitesi, Türkiye
Hatıra Günerhan
Türkiye
Özet
In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal dispersion. The approximate analytical solutions are obtained and compared with each other graphically.
Anahtar Kelimeler
Caputo fractional derivative | conformable derivative | double Laplace transform | nonlinear fractional Schrödinger equation
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Dergi ISSN 0170-4214
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 09-2021
Cilt No 44
Sayı 14
Sayfalar 11138 / 11156
Doi Numarası 10.1002/mma.7476
Makale Linki http://dx.doi.org/10.1002/mma.7476