img
Effect of abrasive water jet turning process parameters on surface roughness and material removal rate of AISI 1050 steel     
Yazarlar
Doç. Dr. Fuat KARTAL
Kastamonu Üniversitesi, Türkiye
Hasan Gökkaya
Karabük Üniversitesi, Türkiye
Özet
The purpose of this study was to optimize and determine the most important abrasive water jet turning (AWJT) operational parameters, such as nozzle diameter (0.75 and 1.3 mm), nozzle feed rate (5, 25 and 45 min-1), stand-off distance (2, 10 and 18 mm), abrasive flow rate (50, 150 and 350 g × min-1), and spindle speed (500,1500 and 2500 min-1), regarding machining efficiency parameters, namely, average surface roughness Ra (μm) and material removal rate (mm3 × min-1), using AISI 1050 steel workpieces machined by abrasive water jet turning. Taguchi L18(21 × 34) orthogonal experimental design was used for the experimental design. Adequacy of the predicted linear regression model equations was tested using the method of ANOVA. These model equations were used to optimize the operational parameters of the surface roughness and material removal rate. Machinability charts, indicating the optimum processes with respect to the surface roughness and material removal rate for AISI 1050 steel workpieces, were developed and presented in this study. As a result of experimental studies, it is seen that nozzle feed rate proved to have the most significant impact on surface roughness by 48.7 %. Abrasive flow rate proved to have the most significant impact on material removal rate by 84.6 %. Using a nozzle diameter of 0.75 mm, the average surface roughness was improved while material removal rate decreased.
Anahtar Kelimeler
Abrasive water jet turning (AWJT),AISI 1050 steel,material removal rate,average surface roughness,Taguchi method
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Materials Testing
Dergi ISSN 0025-5300
Dergi Tarandığı Indeksler SCI-Expanded
Makale Dili İngilizce
Basım Tarihi 09-2015
Cilt No 57
Sayı 9
Sayfalar 773 / 782
Doi Numarası 10.3139/120.110777
Makale Linki http://www.hanser-elibrary.com/doi/10.3139/120.110777