img
3-Parameter Generalized Quaternions      
Yazarlar
Tuncay Deniz Şentürk
Doç. Dr. Zafer ÜNAL Doç. Dr. Zafer ÜNAL
Kastamonu Üniversitesi, Türkiye
Özet
In this article, we give a general form of the quaternions algebra depending on 3-parameters. We define 3-parameter generalized quaternions (3PGQs) and study various properties and applications. Firstly we present the definiton, the multiplication table and algebraic properties of 3PGQs. We give matrix representation and Hamilton operators for 3PGQs. We derive the polar represenation, De Moivre’s and Euler’s formulas with the matrix representations for 3PGQs. Additionally, we derive relations between the powers of the matrices associated with 3PGQs. Finally, Lie groups and Lie algebras are studied and their matrix representations are given. Also the Lie multiplication and the Killing bilinear form are given.
Anahtar Kelimeler
3-Parameter generalized quaternion | De Moivre’s formula | Euler formula | Lie algebra | Matrix representation of quaternions
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı COMPUTATIONAL METHODS AND FUNCTION THEORY
Dergi ISSN 1617-9447
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 09-2022
Cilt No 22
Sayı 3
Sayfalar 575 / 608
Doi Numarası 10.1007/s40315-022-00451-7
Makale Linki https://link.springer.com/article/10.1007/s40315-022-00451-7