img
Vajda’s Identities for Dual Fibonacci and Dual Lucas Sedenions      
Yazarlar
Doç. Dr. Zafer ÜNAL Doç. Dr. Zafer ÜNAL
Kastamonu Üniversitesi, Türkiye
Özet
Fibonacci and Lucas numbers have been the most popular integer sequences since they were defined. These integer sequences have many uses, from nature to computer science, from art to financial analysis. Many researchers have worked on this subject. Sedenions form a 16-dimensional algebra on the field of real numbers. Various systems can be constructed by using the terms of special integer sequences instead of terms in sedenions. In this study, we define dual Fibonacci (DFS) and dual Lucas sedenions (DLS) with the help of Fibonacci and Lucas termed sedenions. Then we calculate some special identities for DFS and DLS such as Vajda's, Catalan's, d'Ocagne's, Cassini's.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü Ulusal alan endekslerinde (TR Dizin, ULAKBİM) yayımlanan tam makale
Dergi Adı Black Sea Journal of Engineering and Science
Dergi ISSN 2619-8991
Dergi Tarandığı Indeksler TR DİZİN
Makale Dili İngilizce
Basım Tarihi 01-2023
Cilt No 5
Sayı 2
Sayfalar 98 / 101
Doi Numarası 10.34248/bsengineering.1253548
Makale Linki http://dx.doi.org/10.34248/bsengineering.1253548
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Vajda’s Identities for Dual Fibonacci and Dual Lucas Sedenions

Paylaş