img
Characteristics of hemp fibre reinforced foam concretes with fly ash and Taguchi optimization       
Yazarlar
Osman Gençel
Bartın Üniversitesi, Türkiye
Doç. Dr. Oğuzhan Yavuz BAYRAKTAR Doç. Dr. Oğuzhan Yavuz BAYRAKTAR
Kastamonu Üniversitesi, Türkiye
Gökhan Kaplan
Atatürk Üniversitesi, Türkiye
Ahmet Benli
Bingöl Üniversitesi, Türkiye
Gonzalo Martinez-Barrera
Witold Brostow
Murat Tek
Burak Bodur
Özet
This study presents investigation on microstructural, mechanical, durability and thermal characteristics of hemp fibers (HFs) reinforced foam concrete with fly ash (FA) and Taguchi optimization approach. Three series of foam concretes mixtures were produced with foam contents of 50, 75 and 100 kg/m3. There is a reference mixture without HFs and FA. Thus, mixtures contain FA as cement replacement at the concentrations of 0%, 10%, 20%, 30%, 40% and 50%. HFs with varying fiber length were introduced into mixes at concentrations of 0.75%, 1.5% and 3% by weight of cement. Slump test was done to see workability. Compression and flexural properties were determined at 7, 28 and 91 days. Durability was investigated by high temperature, freeze–thaw and sulphate exposures. Thermal conductivity, drying shrinkage, porosity, water absorption and dry unit weight properties of foam concretes were also investigated. Experimental results were analyzed using Taguchi optimization approach. Addition of HFs provides very large compressive and flexural strength enhancements. FA addition reduces the drying shrinkage and thermal conductivity while it increases the high temperature resistance of foam concretes.
Anahtar Kelimeler
Durability properties | Fly ash | Foam concrete | Hemp fibers | Physico-mechanical properties | Taguchi optimization
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı CONSTRUCTION AND BUILDING MATERIALS
Dergi ISSN 0950-0618
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 08-2021
Cilt No 294
Sayı 123607
Doi Numarası 10.1016/j.conbuildmat.2021.123607
Makale Linki http://dx.doi.org/10.1016/j.conbuildmat.2021.123607