img
Basalt fiber reinforced foam concrete with marble waste and calcium aluminate cement       
Yazarlar
Doç. Dr. Oğuzhan Yavuz BAYRAKTAR
Kastamonu Üniversitesi, Türkiye
Gökhan Yarar
Türkiye
Ahmet Benli
Bingöl Üniversitesi, Türkiye
Gökhan Kaplan
Atatürk Üniversitesi, Türkiye
Osman Gençel
Bartın Üniversitesi, Türkiye
Mücahit Sütçü
İzmir Katip Çelebi Üniversitesi, Türkiye
Marcin Kozłowski
Marta Kadela
Özet
As a typical cellular lightweight material, foam concrete is produced by mixing cement, water, aggregate and a suitable foaming agent and has a density usually below 1600 kg/m3. The large number of air spaces present in foam concrete ensures that the concrete has advantages such as lightweight, high fluidity during pouring, excellent thermal and sound insulation, superior fire resistance, and outstanding energy absorption capacity. Its high porosity and the connectivity of the pores, which can allow the entry of negative substances into the concrete environment, cause foam concrete to have a very low physico-mechanical and durability performance. To eliminate or reduce these disadvantages, this study adopted the use of basalt fibers (BF) as eco-friendly fiber type and calcium aluminate cement (CAC) as aluminous cement with waste marble powder (WMP) as aggregates in foam concrete. In that respect, 9 mixes with varying content of foaming agent (FC) and basalt fiber have been prepared. Assessment of mechanical performance was based on compressive and flexural strength after 6 h, 1, 7, and 28 days. Dry bulk density, thermal conductivity, porosity, water absorption, and sorptivity of the concretes were determined. Durability characteristics of the concretes were examined by dry shrinkage, high temperature, magnesium sulfate, sulfuric, and hydrochloric acids. The obtained results showed that the content of BF affected the compressive strength of the mixtures slightly negatively or positively depending on the FC. The lowest value in thermal conductivity was gained as 0.645 (W/m K) for the mixture incorporating 1% BF and 50 kg/m3 foam quantity. In addition, the foam concrete incorporating foam of 30 kg/m3 and 1% BF showed the best resistance against MgSO4. The mixture with 2% BF and 30 kg/m3 FC exhibited the lowest mass loss after HCI exposure.
Anahtar Kelimeler
basalt fiber | calcium aluminate cement | durability | foam concrete | mechanical properties | waste marble powder
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Structural Concrete
Dergi ISSN 1464-4177
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q2
Makale Dili İngilizce
Basım Tarihi 02-2023
Cilt No 24
Sayı 1
Sayfalar 1152 / 1178
Doi Numarası 10.1002/suco.202200142
Makale Linki http://dx.doi.org/10.1002/suco.202200142
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
WoS 14
SCOPUS 10
Google Scholar 16
Basalt fiber reinforced foam concrete with marble waste and calcium aluminate cement

Paylaş