img
Two Generalizations of Lucas Sequence       
Yazarlar
Prof. Dr. Göksal BİLGİCİ Prof. Dr. Göksal BİLGİCİ
Kastamonu Üniversitesi, Türkiye
Özet
We define a generalization of Lucas sequence by the recurrence relation lm=blm-1+lm-2 (if m is even) or l m=alm-1+lm-2 (if m is odd) with initial conditions l0=2 and l1=a. We obtain some properties of the sequence {lm}m=0 and give some relations between this sequence and the generalized Fibonacci sequence {qm}m=0 which is defined in Edson and Yayenie (2009). Also, we give corresponding generalized Lucas sequence with the generalized Fibonacci sequence given in Yayenie (2011). © 2014 Elsevier Inc. All rights reserved.
Anahtar Kelimeler
Binet formula | Generalized Fibonacci sequence | Generalized Lucas sequence | Generating function
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı APPLIED MATHEMATICS AND COMPUTATION
Dergi ISSN 0096-3003
Dergi Tarandığı Indeksler SCI-Expanded
Makale Dili İngilizce
Basım Tarihi 10-2014
Cilt No 245
Sayı 1
Sayfalar 526 / 538
Doi Numarası 10.1016/j.amc.2014.07.111
Makale Linki http://linkinghub.elsevier.com/retrieve/pii/S0096300314010807
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
WoS 59
SCOPUS 47
Google Scholar 124
Two Generalizations of Lucas Sequence

Paylaş