img
img
Does data curation matter in citation and co-citation analysis? Evidence from a top service journal     
Yazarlar (3)
Mehmet Ali Köseoğlu
Türkiye
Doç. Dr. Hasan Evrim ARICI Doç. Dr. Hasan Evrim ARICI
Kastamonu Üniversitesi, Türkiye
Doç. Dr. Nagihan ÇAKMAKOĞLU ARICI Doç. Dr. Nagihan ÇAKMAKOĞLU ARICI
Kastamonu Üniversitesi, Türkiye
Devamını Göster
Özet
Bibliometric scholars have primarily evaluated massive data without refining any potential typing and/or spelling errors, resulting in two constraints: misinterpretation of findings and misleading future research in the knowledge domain. Thus, this study aims to introduce the data curation approach in order to reduce these restrictions. Utilizing a renowned service journal (Journal of Service Research) as the study sample, we first acquired all published papers and then constructed raw and clean datasets. We ran citation and co-citation analyses on these datasets separately. Our investigation reveals that clean data yielded more trustworthy and valid results than raw data with redundant references. This study provides an answer to how and why data in bibliometric analysis needs to be cleaned. It thus contributes to the literature by suggesting a new route for scholars to improve the accuracy and reliability of their bibliometric findings.
Anahtar Kelimeler
Quantitative analysis | Cluster analysis | Longitudinal data analysis.
Makale Türü Özgün Makale
Makale Alt Türü ESCI dergilerinde yayınlanan tam makale
Dergi Adı COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT
Dergi ISSN 0973-7766 Wos Dergi
Dergi Tarandığı Indeksler ESCI
Makale Dili İngilizce
Basım Tarihi 12-2023
Cilt No 17
Sayı 2
Sayfalar 269 / 287
Doi Numarası 10.47974/CJSIM-2020-0011
Makale Linki http://dx.doi.org/10.47974/cjsim-2020-0011