img
Comparing the effects of ginger and glibenclamide on dihydroxybenzoic metabolites produced in Stz-induced diabetic rats      
Yazarlar
Ramesh Ahmadi
Saeede Pishghadam
Dr. Öğr. Üyesi Fatemeh MOLLAAMIN Dr. Öğr. Üyesi Fatemeh MOLLAAMIN
Kastamonu Üniversitesi
Mohammad Reza Zand Monfared
Özet
Background: The aim of the present study was to investigate the effect of ginger and glibenclamide on oxidative stress markers. Oxidative stress is caused by an unbalance between a relative overload of oxidants and depletion of antioxidants, as implicated in the pathogenesis of several chronic diseases, including atherosclerosis and diabetes mellitus. Regarding the role of oxidative stress in the pathogenesis of diabetes mellitus, we investigated the effect of ginger and glibenclamide in diabetic rats induced bystreptozocin (STZ). Objectives: This study assessed the effects of ginger and glibenclamide on dihydroxybenzoic acid metabolites in diabetic rats. Materials and Methods: In this study 30 Wistar strain male rats were divided into five groups: Group 1: Normal control receiving normal saline (0.9 0/0), Group 2: control DMSO (Dimethyl sulfoxide) (as solvent of glibenclamide), Group 3: Diabetic control receiving Streptozocin (STZ ) (50 mg/kg), Group 4: diabetic+ Ginger Extract: this group received ginger ethanolic extract (200 mg/kg) via IP (Intraperitoneally) injection for 30 days, and Group 5 diabetic rats received glibenclamide (0.5 m/kg). Production of hydroxyl radicals was examined in the diabetic rats induced by streptozocin. Hydroxyl radicals were generated in plasma of the hyperglycemic rats, and were quantitatively assayed by trapping hydroxyl radicals with salicylic acid so as to produce 2,3-and 2,5-dihydroxybenzoic acid. Results: Production of hydroxyl radicals increased; therefore, by using salicylic acid, hydroxyl radicals were trapped and 2,3dihydroxybenzoic acid and 2,5dihydroxybenzoic acid metabolites were formed then measured by HPLC and spectrophotometer. Rats receiving ginger extract and glibenclamide showed decreased level of metabolites compared to the diabetic controls (P <0/001). This means that antioxidants act as scavenger of free radicals. Conclusions: Comparative effect of ginger and glibenclamide also showed that glibenclamide has antioxidant effect as a scavenger of free radical, but ginger is more capable of eliminating them.
Anahtar Kelimeler
Free radical | Ginger | Glibenclamide | STZ -induced diabetic rats
Makale Türü Özgün Makale
Makale Alt Türü SCOPUS dergilerinde yayımlanan tam makale
Dergi Adı International Journal of Endocrinology and Metabolism
Dergi ISSN 1726-913X
Makale Dili İngilizce
Basım Tarihi 01-2013
Cilt No 11
Sayı 4
Doi Numarası 10.5812/ijem.10266