img
Azo-dye antibacterial with nanotube-[sio2(Oh)2]9 system for drug delivery investigation   
Yazarlar
Majid Monajjemi
Kastamonu University, Turkey
Prof. Dr. Fatma KANDEMİRLİ Prof. Dr. Fatma KANDEMİRLİ
Kastamonu Üniversitesi, Türkiye
Dr. Öğr. Üyesi Fatemeh MOLLAAMIN Dr. Öğr. Üyesi Fatemeh MOLLAAMIN
Kastamonu Üniversitesi, Türkiye
Özet
Azo dye, [SiO2 (OH)2 ]9 molecular ring, and single-walled carbon nanotubes (4,4) SWCNT were considered like an axle, a wheel, and stoppers, respectively. The combination of the azo dye on the [SiO2 (OH)2 ]9 molecular ring with (4,4) SWCNTs may be thought of as a non-covalent system in UV light-isomer-machine. A new molecular motor system that runs like a hinge motion is demonstrated like light-powered molecular hinges. A new molecular motor system that acts as a hinge motion has been demonstrated and introduced as light-moving molecular hinges. By emitting various ultraviolet, visible lights, the [SiO2 (OH)2 ]9 molecular ring in the system can be reversed with the various dumb-bell size on one side attached halogens and fixing it on the other side of the (4,4) SWCNTs surface, a variety of systems in a wide variety of ultraviolet sensors can be designated to a better model of molecular machines and can be used for drug delivery of some antibiotics that are difficult to administer by straight injection. Molecular machines containing a wide variety of ultraviolet sensors have been designed with the combination of azo derivatives formed by replacing different halogens with hydrogen in the azo dye on the [SiO2 (OH)2 ]9 molecular ring to the (4,4) SWCNTs surface.
Anahtar Kelimeler
Molecular motor | Nanotube carbons | Rotaxane | Switchable sensor
Makale Türü Özgün Makale
Makale Alt Türü SCOPUS dergilerinde yayımlanan tam makale
Dergi Adı Biointerface Research in Applied Chemistry
Dergi ISSN 2069-5837
Dergi Tarandığı Indeksler SCOPUS
Makale Dili İngilizce
Basım Tarihi 12-2022
Cilt No 12
Sayı 6
Sayfalar 8515 / 8526
Doi Numarası 10.33263/BRIAC126.85158526