img
GÖRSEL SÖZLÜK VE SINIFLANDIRMA YAKLAŞIMLARINDAN FAYDALANARAK DİYABETİK RETİNOPATİLİ RETİNAL GÖRÜNTÜLERDE SERT EKSUDALARIN TESPİTİ  
Yazarlar
Doç. Dr. Kemal AKYOL Doç. Dr. Kemal AKYOL
Kastamonu Üniversitesi, Türkiye
Özet
Diabetic retinopathy is a disease that causes blindness resulting from damages that emerge in the retina depending on the diabetes mellitus. There are two stages of the disease including the non-proliferative and proliferative. Eyesight loss is blocked by means of early detection and diagnosis of non-proliferative DR findings. In this study, we designed a decision support system for automatic detection of hard exudates which are early stage DR lesions. This system consists of keypoint extraction, feature extraction, visual dictionary and classifying stages. We tested the performance of the system, which we carried out based on system learning and analysis of new retinal images, on the public DIARETDB1 retinal image dataset. Experimental results obtained with Artificial Neural Networks, Random Forest ve Decision Tree algorithms showed us that machine learning technique suggested by us is successful.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü Uluslararası alan indekslerindeki dergilerde yayımlanan tam makale
Dergi Adı Mugla Journal of Science and Technology
Dergi Tarandığı Indeksler
Makale Dili İngilizce
Basım Tarihi 01-2016
Cilt No 2
Sayı 1
Sayfalar 1 / 6
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları

Paylaş