| Yazarlar (5) |
|
Xiamen University, Çin |
Doç. Dr. Gülten TORUN
Kastamonu Üniversitesi, Türkiye |
|
Gazi Üniversitesi, Türkiye |
|
Gazi Üniversitesi, Türkiye |
|
Quanzhou Normal University, Çin |
| Özet |
| In this study, a new kind of modified (Formula presented.) -Bernstein-Stancu operators is constructed. Compared with the original (Formula presented.) -Bézier basis function, the newly operator basis function is more concise in form and has certain symmetry beauty. The moments and central moments are computed. A Korovkin-type approximation theorem is presented, and the degree of convergence is estimated with respect to the modulus of continuity, Peetre's K-functional, and functions of the Lipschitz-type class. Moreover, the Voronovskaja type approximation theorem is examined. Finally, some numerical examples and graphics to show convergence are presented. |
| Anahtar Kelimeler |
| Bézier Bases functions | Korovkin type theorem | modulus of continuity | rate of approximation | Voronovskaja type theorem | λ-Bernstein-Stancu type operators |
| Makale Türü | Özgün Makale |
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale |
| Dergi Adı | Symmetry |
| Dergi ISSN | 2073-8994 Wos Dergi Scopus Dergi |
| Dergi Tarandığı Indeksler | SCI-Expanded |
| Dergi Grubu | Q2 |
| Makale Dili | İngilizce |
| Basım Tarihi | 09-2024 |
| Cilt No | 16 |
| Sayı | 10 |
| Sayfalar | 1 / 14 |
| Doi Numarası | 10.3390/sym16101276 |
| Makale Linki | https://doi.org/10.3390/sym16101276 |
| Atıf Sayıları | |
| WoS | 2 |
| SCOPUS | 2 |
| Google Scholar | 3 |