Yazarlar |
Zhı-Peng Lın
|
Dr. Öğr. Üyesi Gülten TORUN
Kastamonu Üniversitesi, Türkiye |
Esma Kangal
|
Ülkü Dinlemez Kantar
|
Qıng Bo Caı
|
Özet |
In this study, a new kind of modified (Formula presented.) -Bernstein-Stancu operators is constructed. Compared with the original (Formula presented.) -Bézier basis function, the newly operator basis function is more concise in form and has certain symmetry beauty. The moments and central moments are computed. A Korovkin-type approximation theorem is presented, and the degree of convergence is estimated with respect to the modulus of continuity, Peetre’s K-functional, and functions of the Lipschitz-type class. Moreover, the Voronovskaja type approximation theorem is examined. Finally, some numerical examples and graphics to show convergence are presented. |
Anahtar Kelimeler |
Bézier Bases functions | Korovkin type theorem | modulus of continuity | rate of approximation | Voronovskaja type theorem | λ-Bernstein-Stancu type operators |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | Symmetry |
Dergi ISSN | 2073-8994 |
Dergi Tarandığı Indeksler | SCI-Expanded |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 09-2024 |
Cilt No | 16 |
Sayı | 10 |
Sayfalar | 1 / 14 |
Doi Numarası | 10.3390/sym16101276 |
Makale Linki | https://www.mdpi.com/journal/symmetry |