img
On the Properties of the Modified λ-Bernstein-Stancu Operators    
Yazarlar
Zhı-Peng Lın
Dr. Öğr. Üyesi Gülten TORUN Dr. Öğr. Üyesi Gülten TORUN
Kastamonu Üniversitesi, Türkiye
Esma Kangal
Ülkü Dinlemez Kantar
Qıng Bo Caı
Özet
In this study, a new kind of modified (Formula presented.) -Bernstein-Stancu operators is constructed. Compared with the original (Formula presented.) -Bézier basis function, the newly operator basis function is more concise in form and has certain symmetry beauty. The moments and central moments are computed. A Korovkin-type approximation theorem is presented, and the degree of convergence is estimated with respect to the modulus of continuity, Peetre’s K-functional, and functions of the Lipschitz-type class. Moreover, the Voronovskaja type approximation theorem is examined. Finally, some numerical examples and graphics to show convergence are presented.
Anahtar Kelimeler
Bézier Bases functions | Korovkin type theorem | modulus of continuity | rate of approximation | Voronovskaja type theorem | λ-Bernstein-Stancu type operators
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Symmetry
Dergi ISSN 2073-8994
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 09-2024
Cilt No 16
Sayı 10
Sayfalar 1 / 14
Doi Numarası 10.3390/sym16101276
Makale Linki https://www.mdpi.com/journal/symmetry
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
On the Properties of the Modified λ-Bernstein-Stancu Operators

Paylaş