Yazarlar |
Gülten Torun
|
Özet |
In this article, the (p, q)--Stancu--Schurer--Bleimann--Butzer--Hahn ((p, q)‐SSBBH) operators are introduced. The Korovkin‐type theorem is obtained to show the approximation properties of these operators. Then, the rate of convergence of these operators with the help of the modulus of continuity and Lipschitz‐type maximal functions is calculated, respectively. Finally, for the asymptotic behavior of these operators, the Voronovskaja‐type theorem is given. Furthermore, the convergence of these operators to the considered function f by plotting the graphs is demonstrated. And, this convergence is compared with the convergence of the (p, q)--Bleimann--Butzer--Hahn ((p, q)‐BBH) operators to the same function. |
Anahtar Kelimeler |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | Journal of Mathematics |
Dergi Tarandığı Indeksler | |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 01-2024 |
Cilt No | 2024 |
Sayı | 1 |
Sayfalar | 9083766 / 0 |
Doi Numarası | 10.1155/2024/9083766 |
Makale Linki | https://doi.org/10.1155/2024/9083766 |