img
img
Fibonacci and Lucas numbers as products of their arbitrary terms      
Yazarlar (2)
Doç. Dr. Ahmet DAŞDEMİR Doç. Dr. Ahmet DAŞDEMİR
Kastamonu Üniversitesi, Türkiye
Ahmet Emin
Türkiye
Devamını Göster
Özet
This study presents all solutions to the Diophantine equations F_k=L_m L_n and L_k=F_m F_n. To be clear, the Fibonacci numbers that are the product of two arbitrary Lucas numbers and the Lucas numbers that are the product of two arbitrary Fibonacci numbers are determined herein. The results under consideration are proven by using the Dujella-Pethő lemma in coordination with Matveev's theorem. All common terms of the Fibonacci and Lucas numbers are determined. Further, the Lucas-square Fibonacci and Fibonacci-square Lucas numbers are given.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü Ulusal alan endekslerinde (TR Dizin, ULAKBİM) yayımlanan tam makale
Dergi Adı Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering
Dergi ISSN 2667-4211
Dergi Tarandığı Indeksler TR DİZİN
Makale Dili Türkçe
Basım Tarihi 09-2024
Cilt No 25
Sayı 3
Sayfalar 407 / 414
Doi Numarası 10.18038/estubtda.1444927
Makale Linki http://dx.doi.org/10.18038/estubtda.1444927
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Google Scholar 1
Fibonacci and Lucas numbers as products of their arbitrary terms

Paylaş