img
img
Spent coffee grounds anaerobic digestion: Investigating substrate to inoculum ratio and dilute acid thermal pretreatment   
Yazarlar (5)
Semaan Georgeio
Doç. Dr. Muhammed Raşit ATELGE Doç. Dr. Muhammed Raşit ATELGE
Siirt Üniversitesi, Türkiye
Roent Dune Cayetano
Gopalakrishnan Kumar
Roald Kommedal
Devamını Göster
Özet
Spent coffee grounds have the potential of being used in further bioprocesses to produce materials and fuels. In Norway, the relative abundance and ease of collection of this waste substrate make it a candidate for investigation. For this study, the substrate-to-inoculum ratio as well as a combined dilute acid-thermal pretreatment were assessed by a series of biochemical methane potential assays using spent coffee grounds as a substrate. Reactors with substrate-to-inoculum ratio 2 demonstrated a relatively low hydrolysis rate constant (kh) and comparatively high volatile fatty acids/alkalinity concentrations rendering them inapt to produce bio-CH4. Pretreatment was conducted over varying contact times (15–45 min), dilute acid concentrations (1.5–2.5 %, v/v), and liquid-to-solid ratios (10–20 %, v/w) and evaluated using response surface methodology. To determine bio-CH4 yield, pretreatment time and the interaction between acid concentration and liquid-to-solid ratio are considered significant variables, suggesting a shared importance. Chemical oxygen demandremoval is primarily contingent upon changes in liquid-to-solid ratio. Finally, Fourier-transform infrared spectroscopy of the discarded solid phase showed that the major functional groups are still widely present in the coffee grounds even after pretreatment was applied. A better understanding of the biodegradability profile of spent coffee grounds as a function of substrate-to-inoculum ratio is achieved.
Anahtar Kelimeler
Acid thermal pretreatment | Anaerobic digestion | Box behnken design | Spent coffee grounds | Substrate to inoculum ratio
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı FUEL
Dergi ISSN 0016-2361
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 01-2023
Cilt No 331
Sayı 1
Sayfalar 1 / 10
Doi Numarası 10.1016/j.fuel.2022.125598
Makale Linki https://www.sciencedirect.com/science/article/pii/S0016236122024310