| Yazarlar (12) |
|
Kastamonu Üniversitesi, Türkiye |
|
Manisa Celâl Bayar Üniversitesi, Türkiye |
|
Kastamonu Üniversitesi, Türkiye |
|
Manisa Celâl Bayar Üniversitesi, Türkiye |
|
Aydin Adnan Menderes University, Türkiye |
|
Manisa Celâl Bayar Üniversitesi, Türkiye |
|
Kastamonu Üniversitesi, Türkiye |
|
Ege Üniversitesi, Türkiye |
Dr. Öğr. Üyesi Zafer SANCAK
Kastamonu Üniversitesi, Türkiye |
|
Kastamonu Üniversitesi, Türkiye |
|
Manisa Celâl Bayar Üniversitesi, Türkiye |
Prof. Dr. İdris YAZGAN
Kastamonu Üniversitesi, Türkiye |
| Özet |
| In this study, we used Doxorubicin, an FDA approved drug possessing anticancer and antibacterial activity, as a model drug to functionalize sugar ligand synthesized silver/gold bimetallic nanoparticles (Ag/AuNPs) to test simultaneous antibacterial and anticancer activities under in vitro conditions. DU-145 prostate cancer cells were used as the main target while T98G glioblastoma and MDA-MB-231 breast cancer cell lines were used for selectivity test, and HEK-293 epithelial cell line was used as non-cancerous cells to test toxicity of these formulations. Three Ag/AuNP and corresponding Doxorubicin (D) functionalized ones and free Doxorubicin were tested for these four cell lines. Plain Ag/AuNP showed the highest toxicities on HEK-293 cell lines while DU-145 cell line showed the greatest vulnerability for Ag/AuNP-D formulations. However, DU-145 cells showed the lowest susceptibility for free Doxorubicin at all the tested concentrations. The antiproliferative activity was not dose dependent while an inverse relationship was obtained for a certain concentration range. Two Doxorubicin functionalized gold nanoparticles (AuNP-D) were then synthesized and applied on DU-145 cells. Interestingly, a better anticancer activity was obtained even at the minimum applied concentration (1.8 × 10−5 μg/mL D). Antibacterial activities of these formulations were also tested for multidrug-resistant gram (−) and gram (+) bacterial species. Depending on the sugar ligand chemistry, antibacterial activity of Doxorubicin functionalized Ag/AuNPs showed a better performance in comparison to the plain Ag/AuNPs and vice-versa. Based on the results, it can be claimed that selective or semi-selective formulations targeting cancer cells and bacterial species as anti-neutropenia formulations can be developed using carbohydrate derivatives synthesized metallic nanoparticles as drug delivery agents. |
| Anahtar Kelimeler |
| Doxorubicin | Neutropenia | Prostate cancer | Silver/gold bimetallic nanoparticle |
| Makale Türü | Özgün Makale |
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale |
| Dergi Adı | Journal of Drug Delivery Science and Technology |
| Dergi ISSN | 1773-2247 Wos Dergi Scopus Dergi |
| Dergi Grubu | Q1 |
| Makale Dili | İngilizce |
| Basım Tarihi | 03-2025 |
| Cilt No | 105 |
| Sayı | 1 |
| Doi Numarası | 10.1016/j.jddst.2025.106653 |