img
img
Waste Classification Using Random Forest Classifier with DenseNet201 Deep Features  
Yazarlar (1)
Doç. Dr. Kemal AKYOL Doç. Dr. Kemal AKYOL
Türkiye
Devamını Göster
Özet
The successful management of solid waste, which has become a major issue in urban life, reduces environmental pollution. To address this issue, numerous studies using various deep learning models have been conducted. This study focuses on traditional convolutional neural networks and transformer-based deep learning architectures and provides a detailed examination summary. In this context, many experimental studies dealing with the PoolFormer and ResNet transformers and the DenseNet201 and ResNet50 pre-trained CNN models were run on the TrashNet dataset containing waste images. The Random Forest (RF) classifier was trained on different deep features extracted from 80% of this dataset, and the remaining 20% was reserved as the test dataset. Test dataset was used to validate the performance of the RF. According to the results, RF with DenseNet201 deep features presents 96.4 …
Anahtar Kelimeler
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Uluslararası Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı Advances in Computer Science for Engineering and Education VI
Kongre Tarihi 17-03-2023 / 17-03-2023
Basıldığı Ülke Türkiye
Basıldığı Şehir
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Google Scholar 2

Paylaş