img
img
Classification of Electronics Components using Deep Learning    
Yazarlar (2)
Emel Soylu
Türkiye
Öğr. Gör. İbrahim KAYA Öğr. Gör. İbrahim KAYA
İstanbul Beykent Üniversitesi, Türkiye
Devamını Göster
Özet
In this study, we present an advanced electronic component classification system with an exceptional classification accuracy exceeding 99% using state-of-the-art deep learning architectures. We employed EfficientNetV2B3, EfficientNetV2S, EfficientNetB0, InceptionV3, MobileNet, and Vision Transformer (ViT) models for the classification task. The system demonstrates the remarkable potential of these deep learning models in handling complex visual recognition tasks, specifically in the domain of electronic components. Our dataset comprises a diverse set of electronic components, and we meticulously curated and labeled it to ensure high-quality training data. We conducted extensive experiments to fine-tune and optimize the models for the given task, leveraging data augmentation techniques and transfer learning. The high classification accuracy achieved by our system indicates its readiness for real-world deployment, marking a significant step towards advancing automation and efficiency in the electronics industry.
Anahtar Kelimeler
Makale Türü Diğer (Teknik, not, yorum, vaka takdimi, editöre mektup, özet, kitap krıtiği, araştırma notu, bilirkişi raporu ve benzeri)
Makale Alt Türü Ulusal alan endekslerinde (TR Dizin, ULAKBİM) yayımlanan teknik not, editöre mektup, tartışma, vaka takdimi ve özet türünden makale
Dergi Adı Sakarya University Journal of Computer and Information Sciences (Online)
Dergi ISSN 2636-8129
Dergi Tarandığı Indeksler TR DİZİN
Makale Dili İngilizce
Basım Tarihi 01-2024
Cilt No 7
Sayı 1
Sayfalar 36 / 45
Makale Linki https://doi.org/10.35377/saucis...1391636
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları

Paylaş