Yazarlar (1) |
![]() Kastamonu Üniversitesi, Türkiye |
Özet |
Bu çalışma, su kalitesinin değerlendirilmesinde önemli bir parametre olan pH değerinin tahmini için Random Forest Regression ve LightGBM algoritmalarını karşılaştırmayı amaçlamaktadır. Kaggle platformundan elde edilen geniş bir veri seti üzerinde gerçekleştirilen analizlerde, her iki algoritmanın performansı RMSE, R-squared ve AUC (Area Under Curve) gibi metriklerle değerlendirilmiştir. Sonuçlar, LightGBM algoritmasının AUC değeriyle (0.86), Random Forest'tan (0.84) daha yüksek performans sergilediğini ve özellikle büyük ve karmaşık veri setlerinde daha iyi bir tahmin doğruluğu sağladığını göstermiştir. Bu bulgular, makine öğrenimi tekniklerinin çevresel izleme süreçlerindeki uygulanabilirliğini ve su kalitesinin etkin bir şekilde yönetilmesindeki potansiyelini ortaya koymaktadır. Elde edilen sonuçlar, pH tahmini gibi çevresel sorunların çözümünde LightGBM algoritmasının üstünlüğünü vurgulamakla birlikte, daha kapsamlı yaklaşımlar için öneriler de sunmaktadır. Hibrit modelleme tekniklerinin uygulanması, farklı su kaynaklarından alınan veri setleriyle genelleştirilebilir analizlerin yapılması ve gerçek zamanlı izleme sistemlerinin geliştirilmesi, çalışmanın bulgularının genişletilmesi adına önerilmektedir. Bu çalışma, çevresel izleme ve su kalitesi yönetiminde makine öğrenimi algoritmalarının önemini bir kez daha ortaya koyarak literatüre katkı sağlamaktadır. |
Anahtar Kelimeler |
Makale Türü | Özgün Makale |
Makale Alt Türü | Ulusal alan endekslerinde (TR Dizin, ULAKBİM) yayımlanan tam makale |
Dergi Adı | Memba Su Bilimleri Dergisi |
Dergi ISSN | 2147-2254 |
Dergi Tarandığı Indeksler | TR DİZİN |
Makale Dili | İngilizce |
Basım Tarihi | 03-2025 |
Cilt No | 11 |
Sayı | 1 |
Sayfalar | 42 / 49 |
Doi Numarası | 10.58626/memba.1667338 |
Makale Linki | https://doi.org/10.58626/memba.1667338 |
Atıf Sayıları |