Yazarlar (1) |
![]() Türkiye |
Özet |
The computational fluid dynamics enables to predict steady-state mass transfer in a polymeric membrane. The efficiency, robustness, and reliability of recent numerical methods for finding solutions to flow problems have given rise to the implementation of CFD as a broadly used analysis method for engineering problems like membrane separation system. This approach is divided into three methods, including finite difference, finite volume, and finite element, which all of these methods can be applied in industry. The flow of fluids is a basic operation in industry as the transformation of mass requires the flow of raw materials. This transformation may occur through a change in chemical composition or the elimination of compounds for environmental reasons. Gas-liquid phases can be modeled by the Eulerian approach assuming that the two phases flow as non-interpenetrating or interpenetrating continua. The Eulerian model assuming non-interpenetrating continua is often called the volume of fluid (VOF) method, which is a surface-tracking technique for immiscible fluids (hereafter VOF-CFD). In this study we discussed about a setup system for osmotic membrane distillation; (b) hollow fiber flow-cell (c) Concentration profile across an FO membrane in different types of polarization. In addition Nano-filtration membrane (NF) of proton exchange membrane for Fuel Cells has been simulated and multiphase CFD model of PEM fuel cell were discussed for thermal management in electrochemical phenomenon of voltages and amperage versus membrane thickness. Finally, the combination of a population balance model with Eulerian multiphase framework as effective way for predicting number densities and particle size distribution for polymers and macromolecules have been investigated. |
Anahtar Kelimeler |
computational fluid dynamics (CFD) | microfiltration (MF) | nano-filtration membrane (NF) | Navier--Stokes equations | ultrafiltration (UF) |
Makale Türü | Özgün Makale |
Makale Alt Türü | SCOPUS dergilerinde yayınlanan tam makale |
Dergi Adı | Russian Journal of Physical Chemistry B |
Dergi ISSN | 1990-7931 Wos Dergi Scopus Dergi |
Dergi Tarandığı Indeksler | SCI-Exp, SCOPUS, CCR Database, Chemistry Server Reaction Center, Curation, Current Contents Physical Chemical & Earth Sciences, Essential Science Indicators, Reaction Citation Index, Reference Master, Sophia |
Makale Dili | İngilizce |
Basım Tarihi | 08-2025 |
Cilt No | 19 |
Sayı | 4 |
Sayfalar | 887 / 902 |
Doi Numarası | 10.1134/S199079312570068X |