img
img
Prediction and Optimization of Tensile Strength Values of 3D Printed PLA Components with RSM, ANOVA and ANN Analysis   
Yazarlar (2)
Doç. Dr. Fuat KARTAL Doç. Dr. Fuat KARTAL
Kastamonu Üniversitesi, Türkiye
Arslan Kaptan
Sivas Cumhuriyet Üniversitesi, Türkiye
Devamını Göster
Özet
This study evaluates the comparative effectiveness of Response Surface Methodology (RSM), Analysis of Variance (ANOVA), and Artificial Neural Networks (ANN) in predicting and optimizing the tensile strength of 3D-printed PLA components. Key process parameters—including layer thickness, infill density, print speed, temperature, and build orientation—were systematically varied to analyze their impact on tensile strength. The results indicate that RSM and ANOVA offer higher prediction accuracy compared to ANN, with lower deviation rates (0.65%, 0.18%, and 3.43% for RSM; 0.20%, 0.12%, and 3.25% for ANOVA) versus ANN (5.93%, 3.88%, and 6.26%). The analysis revealed that layer thickness plays the most significant role in tensile strength, followed by temperature, infill density, build orientation, and print speed. The optimal combination of parameters—0.20 mm layer thickness, 50% infill density, 50 mm/s print speed, 220°C nozzle temperature, and 90° build orientation—yielded a maximum tensile strength of 55.506 MPa. These findings highlight the importance of parameter optimization in improving the mechanical properties of FDM-printed components. The study provides valuable insights for enhancing the reliability and efficiency of additive manufacturing processes, paving the way for future research on hybrid modeling techniques and alternative material applications.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü Ulusal alan endekslerinde (TR Dizin, ULAKBİM) yayınlanan tam makale
Dergi Adı European Journal of Technique
Dergi ISSN 2536-5134
Dergi Tarandığı Indeksler TR DİZİN
Makale Dili Türkçe
Basım Tarihi 01-2025
Cilt No 15
Sayı 1
Sayfalar 51 / 60
Doi Numarası 10.36222/ejt.1561857
Makale Linki https://dergipark.org.tr/tr/download/article-file/4265706