Yazarlar (5) |
![]() Türkiye |
![]() Türkiye |
![]() Kastamonu Üniversitesi, Türkiye |
![]() Kastamonu Üniversitesi, Türkiye |
![]() Hacettepe Üniversitesi, Türkiye |
Özet |
In this study, a new approach based on Random Forest algorithm is presented for the detection of earthquake precursors in the ionosphere. Total Electron Content (TEC) data estimated from TUSAGA-Active stations belonging to three quiet and three disturbed days and the 2023 Kahramanmaraş earthquake period are used in the study. 9 different features derived from TEC data are used in the proposed model. Random Forest algorithm successfully has detected earthquake-related ionospheric disturbances with 95.45% Accuracy rate. It is observed that the model can also effectively distinguish disturbances caused by solar activity and geomagnetic storms. |
Anahtar Kelimeler |
Ionospheric Earthquake Precursors | Machine Learning | Random Forests | TEC Disturbances |
Bildiri Türü | Tebliğ/Bildiri |
Bildiri Alt Türü | Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum) |
Bildiri Niteliği | Alanında Hakemli Uluslararası Kongre/Sempozyum |
Bildiri Dili | Türkçe |
Kongre Adı | 2025 33rd Signal Processing and Communications Applications Conference (SIU) |
Kongre Tarihi | 25-06-2025 / 28-06-2025 |
Basıldığı Ülke | |
Basıldığı Şehir | İstanbul |