img
img
A Hybrid CNN Framework for Kidney Stone Detection Using Transfer Learning and Feature Fusion   
Yazarlar (6)
Coşku Öksüz
Türkiye
Artun Narter
Doç. Dr. Bünyamin ECE Doç. Dr. Bünyamin ECE
Kastamonu Üniversitesi, Türkiye
Mustafa Koyun
Türkiye
Dr. Öğr. Üyesi İsmail TAŞKENT Dr. Öğr. Üyesi İsmail TAŞKENT
Kastamonu Üniversitesi, Türkiye
Mehmet Kemal Güllü
İzmir Bakırçay Üniversitesi, Türkiye
Devamını Göster
Özet
In this study, a deep learning method for kidney stone detection is proposed. The method utilizes transfer learning by extracting features from a pre-trained ImageNet model. However, unlike traditional transfer learning, which directly applies or fine-tunes a pre-trained model, the proposed approach integrates a custom-designed CNN that operates in parallel with the pre-trained network. The feature maps obtained from both networks are fused to enhance the model’s representation power. After this integration, task-specific classification layers are added, and the training process is conducted on both the classification layers and the optimized model. This approach improves the overall performance of the model while providing a more efficient training process. As part of this study, a new dataset was created, consisting of 2166 axial slice images from 241 patients and 2018 axial slice images from 46 healthy individuals. Experiments conducted using EfficientNetV2s, MobileNetV4s, SqueezeNet, and ResNet18-based models revealed that the EfficientNetV2s and MobileNetV4s-based models excelled in terms of accuracy, while the SqueezeNet and ResNet18-based models provided stronger results in terms of interpretability.
Anahtar Kelimeler
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Uluslararası Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı 33rd European Signal Processing Conference EUSIPCO 2025
Kongre Tarihi 08-09-2025 / 12-09-2025
Basıldığı Ülke İtalya
Basıldığı Şehir Palermo
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları

Paylaş