img
img
Experimental and ANN-Based Optimization of Thermal and Hydraulic Performance in a Hexagonal Honeycomb Structure    
Yazarlar (3)
Adnan Berber
Selçuk Üniversitesi, Türkiye
Cuma Ali Yılmaz
Doç. Dr. Mehmet GÜRDAL Doç. Dr. Mehmet GÜRDAL
Kastamonu Üniversitesi, Türkiye
Devamını Göster
Özet
This study uses an experimental and machine learning-based approach to investigate the effects of hexagonal honeycomb structures on forced convection heat transfer. The research addresses the lack of comprehensive studies on hexagonal geometries' thermal and hydraulic performance under varying flow and current conditions. This study's novelty lies in integrating experimental and machine learning methods to optimize heat transfer and friction characteristics, contributing to the efficient design of heat exchangers for industrial applications. An experimental setup with a turbulent flow regime and aluminum honeycomb heat exchangers was employed. The system parameters, including Nusselt number (Nu) and friction factor (f), were analyzed for various honeycomb geometry rates (0.26, 0.56, and 0.80), airflow velocities (10, 15, and 20 m/s), and electrical currents (50, 100, 150, 200, and 250 A). The data were …
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı International Journal of Thermal Sciences
Dergi ISSN 1290-0729 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 01-2025
Makale Linki https://www.sciencedirect.com/journal/international-journal-of-thermal-sciences
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları

Paylaş