img
Quadratic eigenparameter dependent discrete Sturm Liouville equations with spectral singularities     
Yazarlar
Prof. Dr. Turhan KÖPRÜBAŞI Prof. Dr. Turhan KÖPRÜBAŞI
Kastamonu Üniversitesi, Türkiye
Nihal Yokuş
Selçuk Üniversitesi, Türkiye
Özet
Let us consider the boundary value problem (BVP) for the discrete Sturm-Liouville equationan-1yn-1+bnyn+anyn+1=λyn,n N,( γ0+γ1λ+γ2λ2)y1+(β0+ β1λ+β2λ2) y0=0,where (an) and (bn),nâ̂̂N are complex sequences, γi,βiâ̂̂ C,i=0,1,2, and λ is a eigenparameter. Discussing the point spectrum, we prove that the BVP (0.1) and (0.2) has a finite number of eigenvalues and spectral singularities with a finite multiplicities, ifsupnâ̂̂ Nexp(εnδ)1-an+bn<â̂ for some ε>0 and 12≤δ≤1. © 2014 Elsevier Inc. All rights reserved.
Anahtar Kelimeler
Discrete equations | Eigenparameter | Eigenvalues | Spectral analysis | Spectral singularities
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı APPLIED MATHEMATICS AND COMPUTATION
Dergi ISSN 0096-3003
Dergi Tarandığı Indeksler SCI-Expanded
Makale Dili İngilizce
Basım Tarihi 10-2014
Cilt No 244
Sayı 1
Sayfalar 57 / 62
Doi Numarası 10.1016/j.amc.2014.06.072
Makale Linki http://linkinghub.elsevier.com/retrieve/pii/S0096300314009163