Yazarlar |
Prof. Dr. Turhan KÖPRÜBAŞI
Kastamonu Üniversitesi, Türkiye |
Nihal Yokuş
Selçuk Üniversitesi, Türkiye |
Özet |
Let us consider the boundary value problem (BVP) for the discrete Sturm-Liouville equationan-1yn-1+bnyn+anyn+1=λyn,n N,( γ0+γ1λ+γ2λ2)y1+(β0+ β1λ+β2λ2) y0=0,where (an) and (bn),nâ̂̂N are complex sequences, γi,βiâ̂̂ C,i=0,1,2, and λ is a eigenparameter. Discussing the point spectrum, we prove that the BVP (0.1) and (0.2) has a finite number of eigenvalues and spectral singularities with a finite multiplicities, ifsupnâ̂̂ Nexp(εnδ)1-an+bn<â̂ for some ε>0 and 12≤δ≤1. © 2014 Elsevier Inc. All rights reserved. |
Anahtar Kelimeler |
Discrete equations | Eigenparameter | Eigenvalues | Spectral analysis | Spectral singularities |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | APPLIED MATHEMATICS AND COMPUTATION |
Dergi ISSN | 0096-3003 |
Dergi Tarandığı Indeksler | SCI-Expanded |
Makale Dili | İngilizce |
Basım Tarihi | 10-2014 |
Cilt No | 244 |
Sayı | 1 |
Sayfalar | 57 / 62 |
Doi Numarası | 10.1016/j.amc.2014.06.072 |
Makale Linki | http://linkinghub.elsevier.com/retrieve/pii/S0096300314009163 |