img
Spectrum of the Sturm Liouville operators with boundary conditions polynomially dependent on the spectral parameter     
Yazarlar
Nihal Yokuş
Karamanoğlu Mehmetbey Üniversitesi, Türkiye
Prof. Dr. Turhan KÖPRÜBAŞI Prof. Dr. Turhan KÖPRÜBAŞI
Kastamonu Üniversitesi, Türkiye
Özet
In this paper, we consider the operator L generated in L2 (R+) by the Sturm-Liouville equation (formula presented), and the boundary condition (formula presented), where q is a complex-valued function, (formula presented) is an eigenparameter. Under the conditions(formula presented), using the uniqueness theorems of analytic functions, we prove that L has a finite number of eigenvalues and spectral singularities with finite multiplicities.
Anahtar Kelimeler
eigenparameter | eigenvalues | spectral singularities | Sturm-Liouville equations
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı JOURNAL OF INEQUALITIES AND APPLICATIONS
Dergi ISSN 1029-242X
Dergi Tarandığı Indeksler SCI-Expanded
Makale Dili İngilizce
Basım Tarihi 02-2015
Cilt No 2015
Sayı 1
Sayfalar 42 / 0
Doi Numarası 10.1186/s13660-015-0563-1
Makale Linki http://www.journalofinequalitiesandapplications.com/content/2015/1/42