img
Visual object detection for autonomous transport vehicles in smart factories      
Yazarlar
Arş. Gör. Nazlıcan GENGEÇ ZORKUN Arş. Gör. Nazlıcan GENGEÇ ZORKUN
Kastamonu Üniversitesi, Türkiye
Onur Eker
Hakan Çevikalp
Türkiye
Ahmet Yazıcı
Türkiye
Hasan Serhan Yavuz
Türkiye
Özet
Autonomous transport vehicles (ATVs) are one of the most substantial components of smart factories of Industry 4.0. They are primarily considered to transfer the goods or perform some certain navigation tasks in the factory with self driving. The recent developments on computer vision studies allow the vehicles to visually perceive the environment and the objects in the environment. There are numerous applications especially for smart traffic networks in outdoor environments but there is lack of application and databases for autonomous transport vehicles in indoor industrial environments. There exist some essential safety and direction signs in smart factories and these signs have an important place in safety issues. Therefore, the detection of these signs by ATVs is crucial. In this study, a visual dataset which includes important indoor safety signs to simulate a factory environment is created. The dataset has been used to train different fast-responding popular deep learning object detection methods: faster R-CNN, YOLOv3, YOLOv4, SSD, and RetinaNet. These methods can be executed in real time to enhance the visual understanding of the ATV, which, in turn, helps the agent to navigate in a safe and reliable state in smart factories. The trained network models were compared in terms of accuracy on our created dataset, and YOLOv4 achieved the best performance among all the tested methods.
Anahtar Kelimeler
Autonomous transport vehicles | Deep learning | Object detection | Safety sign detection | Smart factories
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
Dergi ISSN 1300-0632
Dergi Tarandığı Indeksler SCI-Expanded
Makale Dili İngilizce
Basım Tarihi 01-2021
Cilt No 29
Sayı 4
Sayfalar 2101 / 2115
Doi Numarası 10.3906/elk-2008-62
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
WoS 5
SCOPUS 9
Visual object detection for autonomous transport vehicles in smart factories

Paylaş