img
img
Visual Object Detection System for Autonomous Vehicles in Smart Factories    
Yazarlar (4)
Arş. Gör. Nazlıcan GENGEÇ ZORKUN Arş. Gör. Nazlıcan GENGEÇ ZORKUN
Kastamonu Üniversitesi, Türkiye
Hakan Çevikalp
Eskişehir Osmangazi Üniversitesi, Türkiye
Hasan Serhan Yavuz
Eskişehir Osmangazi Üniversitesi, Türkiye
Ahmet Yazıcı
Eskişehir Osmangazi Üniversitesi, Türkiye
Devamını Göster
Özet
Autonomous transport vehicles are very important for smart factories. Computer vision studies for autonomous vehicles in industrial environments are considerably less than that of outdoor applications. Recognition of safety signs has an important place in safe movement of vehicles and safety of humans in factories. In this study, we built a test environment for smart factories and collected a visual data set including some important safety signs for the safe and comfortable movement of the vehicles in smart factories. Then, we developed a visual object detection system using YOLOv3 deep learning model and tested it by using autonomous robots. In our tests, an accuracy of 76.14% mAP (mean average precision) score was obtained in the dataset we collected.
Anahtar Kelimeler
autonomous vehicles | computer vision | deep learning
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayımlanan Tebliğ (Ulusal Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Ulusal Kongre/Sempozyum
Bildiri Dili Türkçe
Kongre Adı 2019 Innovations in Intelligent Systems and Applications Conference (ASYU)
Kongre Tarihi 31-10-2019 /
Basıldığı Ülke
Basıldığı Şehir
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Visual Object Detection System for Autonomous Vehicles in Smart Factories

Paylaş