Yazarlar |
Öğr. Gör. Dr. Atilla SUNCAK
Kastamonu Üniversitesi, Türkiye |
Özlem Aktaş
Türkiye |
Özet |
Anlatım bozukluğu, Türkçe cümlelerde hem anlamsal hem de biçimsel belirsizlikleri ifade eden bir dilbilgisi terimidir. Daha önceki çalışmalarda, kural tabanlı dile özgü modeller oluşturularak Doğal Dil İşleme (DDİ) teknikleri kullanılmıştır. Bununla birlikte, daha az talepkar açıklama gereksinimlerine ve harici bilgiyi birleştirme kolaylığına rağmen, kural tabanlı sistemler, işleme verimliliği açısından bazı büyük engellere sahiptir. Uzun Kısa-Süreli Bellek (UKSB (ing: LSTM)) veya Evrişimsel Sinir Ağları (ESA (ing: CNN)) gibi derin öğrenme teknikleri son yıllarda büyük ilerlemeler kaydetmiş, bu da DDİ uygulamalarında performans açısından benzeri görülmemiş bir artışa yol açmıştır. Bu çalışmada, anlatım bozukluklarını tespit etmek için UKSB ve ESA'nın hibrit modeli olan bir derin öğrenme yaklaşımı (E-UKSB (ing: C-LSTM)) ve buna ek olarak sonuçları doğruluk açısından karşılaştırmak için Destek Vektör Makinesi (DVM (ing: SVM)) ve Rastgele Orman (RO (ing: RF)) gibi geleneksel makine öğrenmesi sınıflandırıcıları önerilmiştir. Önerilen hibrit model, geleneksel DVM ve rastgele orman sınıflandırıcılarına ek olarak, ESA ve UKSB’nin mevcut modellerinden daha yüksek başarım elde etmiştir. Bu durum, metin sınıflandırma için geleneksel sınıflandırıcılara kıyasla derin sinirsel yaklaşımların daha çok ön plana çıktığını göstermektedir. |
Anahtar Kelimeler |
Makale Türü | Özgün Makale |
Makale Alt Türü | Ulusal alan endekslerinde (TR Dizin, ULAKBİM) yayımlanan tam makale |
Dergi Adı | Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi |
Dergi ISSN | 1302-9304 |
Dergi Tarandığı Indeksler | TR DİZİN |
Makale Dili | İngilizce |
Basım Tarihi | 09-2022 |
Cilt No | 24 |
Sayı | 72 |
Sayfalar | 825 / 834 |
Doi Numarası | 10.21205/deufmd.2022247212 |
Makale Linki | https://doi.org/10.21205/deufmd.2022247212 |