img
The spectrum of eigenparameter dependent discrete Sturm Liouville equations     
Yazarlar
Elgiz Bayram
Ankara Üniversitesi, Türkiye
Yelda Aygar Küçükevcilioğlu
Ankara Üniversitesi, Türkiye
Prof. Dr. Turhan KÖPRÜBAŞI Prof. Dr. Turhan KÖPRÜBAŞI
Kastamonu Üniversitesi, Türkiye
Özet
Let us consider the boundary value problem (BVP) for the discrete SturmLiouville equation an-1yn-1+bny n+anyn+1=λ yn,n∈N, (γ0+γ1λ) y1+(β0+β1λ)y0=0, where (an) and (bn),n∈N are complex sequences, γi,βi∈C,i=0,1, and λ is a eigenparameter. Discussing the point spectrum, we prove that the BVP (0.1), (0.2) has a finite number of eigenvalues and spectral singularities with a finite multiplicities, if supn∈N[exp(ε nδ)(|1a n|+|bn|)]<∞, for some ε>0 and 12≤δ≤1. © 2011 Published by Elsevier B.V. All rights reserved.
Anahtar Kelimeler
Discrete equations | Eigenvalues | Spectral analysis | Spectral singularities
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Journal of Computational and Applied Mathematics
Dergi ISSN 0377-0427
Dergi Tarandığı Indeksler SCI
Dergi Grubu Q4
Makale Dili İngilizce
Basım Tarihi 06-2011
Cilt No 235
Sayı 16
Sayfalar 4519 / 4523
Doi Numarası 10.1016/j.cam.2009.12.037
Makale Linki http://linkinghub.elsevier.com/retrieve/pii/S0377042709008541